Restoration Research Park

Center for Applied Forest Restoration Research & Advice
in Mexico's Balam-Kú Ecosystem Reserve

Planting a single tree is easy. But how do you restore vast, degraded forests and bring back as many of the locally lost species as possible? Which restoration methods are most effective in different ecosystems and different levels of degradation? How can regrowing forests withstand and mitigate the complex challenges of the climate crisis? How can restoration be maximally beneficial to the local community?

Many important scientific questions remain unanswered. And restoration initiatives around the world are waiting for answers.

Image
Botanist Oscar Verduzco at his office in the Research Park

Ongoing Research

Planting Density Optimisation

Planting Density Optimisation

How do different soil conditions affect the optimal planting density and planting pattern? That’s one of the key questions for tree planting efforts. To address this, we replicated a range of planting densities across a range of soil conditions in our largest experiment with 1.2 million seedlings of 21 species. This effort was integrated directly into our ongoing restoration effort. 

We seek to understand how different planting densities affect the short and long term carbon and biodiversity dynamics of regrowing forests in different soil conditions.

The experiment was set up in 2021 in collaboration with Dr. Leland Werden and is set out to be a 30-year trial. We expect to publish the first data after three years.

Nitrogen-Fixing Species

Nitrogen is one of the key nutrients plants need to grow. To do so, they extract inorganic nitrogen from the forest soil. A lot of tropical dry forests are nitrogen limited. That means that the low levels of nitrogen is the primary reason plants in that ecosystem are not growing faster. So what can be done?

Well, there is one family of plants with a unique ability. Species in the Fabaceae family (also called Legumes) grow small nodules on their roots and in those nodules they host special bacteria. These bacteria can fix nitrogen from the atmosphere and convert it into the type of nitrogen that plants can use. So while all other plants are competing for the limited inorganic nitrogen in the forest soil, the Fabaceae species just create their own through this symbiosis. 

But that's not all. When plant material of these species decompose, that ‘new’ nitrogen is made available to other plants around. So in effect, they are helping other plants without that ability, to grow too.

So what percentage of all the seedlings planted should be such N-fixers to maximise growth without reducing forest biodiversity?

To answer that, we set up the first experiment with 16,000 trees in 2020. The experiment includes 160 subplots, evenly divided between ones that have 0%, 10%, 30% and 60% N-fixer species. 

Continuous Research for Climate Justice
Map of the n-fixer optimisation field experiment in Las Americas 5 with 16,000 seedlings in a randomised block design.

Forest Soil Microbiome Restoration

We are also testing a hypothesis that a simple addition of forest soil to a tree’s planting hole can increase survival rates. We expect to be introducing symbiotic microbes through the soil addition and thus the soil microorganism diversity in degraded soil towards communities that ‘help’ the trees grow.

Continuous Research for Climate Justice

Functional Diversity Restoration

How can we build optimal species mixes that catalyze the recovery of resilient forests and help ensure that the right trees are planted in the right places?

In collaboration with the Global Experiments Network.

The aim of the study is to test and develop a method for selecting species mixes that not only better resemble those found in natural forests, but also are more likely to be resilient to future environmental conditions while contributing to the multiple socio-environmental benefits of forest restoration. 

We look at how specific values of functional traits as well as complex mixes of traits influence growth, survival, recovery of native biodiversity, provisioning of ecosystem services, and in the long-term, stand-level resilience to climate change. This will provide insights into patterns of ecosystem recovery under different compositions and combinations of planted tree species. By grouping species by their functional traits, we can start to predict how the extraordinary diversity of tree species across the tropics are likely to respond when planted across the range of environmental conditions present at specific restoration sites. 

The study consists of 36 experimental plots that measure 15 × 15m each and are spaced 10 m apart. Each plot is given one of six different planting treatments – replicated six times.

Neutral vs Niche Theory: What drives tree diversity in secondary forests?

What are the underlying processes that generate tree diversity in tropical dry forests that have been impacted by human land use? Anna Gee, a Ph.D. student from Imperial College, London aims to answer that question.  Her work explores theories of community assembly that have mainly been developed in undisturbed forests and apply them to disturbed systems to look for changes to the fundamental ecological processes driving forest composition. This work involves large-scale surveys of the seed, seedling, and sapling communities in sites across Las Americas 7. Looking at these early stages in the life cycle of the trees can help to build up a picture of what naturally regenerating forests at this site might look like in the future.

A range of other projects look at germination procedures, seed rain, assisted vs natural regeneration, and post-disturbance community assembly. 

Image
Restoration Advice Team

Nested within the Empowerment & Restoration Research Park is our Restoration Advice Team. We are building this team of experienced restoration ecologists to provide actionable restoration advice for projects around the world. The advice directly builds on the insights discovered by the research team.

Plant-for-the-Planet already collaborates with more than 200 forest restoration projects in over 50 countries. Many of them will benefit from the support of this team.

Learn More
Image

Infrastructure & Team

Research Team
A botanist, a research coordinator and a team of field assistants support a range of experiments.
Image
RESTORATION-CONSERVATION SITES -AMERICAS Yucatan
129 ha Experimental Sites

Two mostly-deforested research sites, a total of 129 ha allow for a range of large restoration field experiments.
Additionally, Plant-for-the-Planet’s 20,000 ha of restoration and conservation sites, as well as the 500,000 ha of the Balam-Kú and Balam-Kin reserves, can be used for further (non-destructive) research.

Experimental Nursery
Our on-site nursery with a capacity for 200,000 seedlings can help grow specific species for experiments and allow for experiments on seedlings.
Image
Image
Shadehouse
For experiments where we need to control water levels, we have a 100 shade house.
Drying Room
With our drying room, we can dry hundreds of soil and plant samples at once before sending them to a lab.
Image
Image
Office & Accommodation
Our office is a shared space for the restoration, advisory, quality control and research teams.
Tour of the Campus


Publications

2025

Gee, A., Werden, L.K., Verduzco-Salazar, O.E., Nie, R. & Waring, B.G. (2025). Secondary succession of a seasonally dry tropical forest is taxonomically stochastic but functionally deterministic. Forest Ecology and Management, 598. https://doi.org/10.1016/j.foreco.2025.123184.


This research took place in the Las Americas 7 sites at Plant-for-the-Planet Mexico and Plant-for-the-Planet Mexico made a vital contribution to data collection through field support, species identification, and the research nursery infrastructure. The paper found that the functional traits of tree species were predictable at different life stages and stages of tropical dry forest succession, and made recommendations for species selection and target states for restoration projects. For more information, see our blog.

2024

Cole, R.J., Werden, L.K., Chiriboga Arroyo, F., Mendez Quirós, K., Quirós Cedeño, G. & Crowther, T.W. (2024). Forest restoration in practice across Latin America. Biological Conservation, 294. https://doi.org/10.1016/j.biocon.2024.110608.

Plant-for-the-Planet Mexico was one of 166 restoration practitioners who contributed to this systematic assessment of forest restoration work across Latin America.

2022

Averill, C., Anthony, M.A., Baldrian, P., Finkbeiner, F., van den Hoogen, J., Kiers, T., Kohout, P., Hirt, E., Reuben Smith, G. & Crowther, T.W. (2022). Defending Earth’s terrestrial microbiome. Nat Microbiol 7, 1717–1725. https://doi.org/10.1038/s41564-022-01228-3.

The authors present active microbiome restoration as a promising method to increase the speed and resilience of restoration, but emphasize that success is determined by ecological context and more research is needed to determine when and where these approaches are most effective. Three of the authors established the microbiome restoration experiment in Las Americas 5 to help address this knowledge gap.

2019

Bastin, J.-F., Finegold, Y., Garcia, C., Mollicone, D., Rezende, M., Routh, D., Zohner, C.M. & Crowther, T.W. (2019). The global tree restoration potential. Science 365, 76-79. 10.1126/science.aax0848.

This paper mapped the global potential tree coverage and highlighted the opportunity for climate change mitigation through global tree restoration. It has been cited 1,527 times. The research was part funded by Plant-for-the-Planet.

2015

Crowther, T., Glick, H.B., Covey, K.R., Bettigole, C., Maynard, D.S., Thomas, S.M., Smith, J.R., Hintler, G., Duguid, M.C., Amatulli, G., Tuanmu, M.-N., Jetz, W., Salas, C., Stam, C., Piotto, D., Tavani, R., Green, S., Bruce, G., Williams, S.J. … Bradford, M.A. (2015). Mapping tree density at a global scale. Nature 525, 201–205. https://doi.org/10.1038/nature14967.

This paper provided the first spatially continuous map of forest tree density at a global scale and has been cited 778 times. Plant-for-the-Planet is acknowledged for "initial discussions and collaboration".

“It was a trip full of surprises. We arrived at a true earthly paradise, the cradle of the ancient Mayan culture that today remains in ruins. The objective was to lay the first stone for the creation of a Training and Forest Restoration Park, promoted by the prestigious UN-associated non-governmental organisation, Plant-for-the-Planet”
Image
“In an interview with this newspaper, Negrete Cetina highlights that the research park will provide the opportunity to learn directly about the studies being done on environmental issues and find solutions for deforestation, climate change and the restoration of flora and fauna.”
Image
“Since founding in 2013, [Plant-for-the-Planet’s] reforestation program has planted 7.5 million trees until November of last year. The 39 hectare Research Park will include laboratories, nurseries and housing for the researchers who will be there.”
CANAL 13
    Research Fellowships
    A fieldsite for scientists from all over the world

    Universities and research institutes often lack the facilities to offer researchers  the necessary framework conditions to test forest restoration methods in the  open field. Especially when it comes to large-scale experiments that require a lot of space.  Interested in setting up a restoration field trial with us? Our team is excited to help with setup and data collection for your experiment. And you are welcome to live with us on-site for the duration of your experiment.

    Interested in becoming a research fellow? Send your application to [email protected] 

    Image
    Image
    Support Us!

    We need help to set up a range of further, crucial experiments and to build our restoration advice team so that struggling forest restoration projects around the world can benefit from expert advice.

    Interested in supporting us? We’d love to hear from you! [email protected]

    Or donate directly!

    Donate for the Research Park
    Laying the Cornerstone
    The research site was inaugurated by Mayor Miguel Arcos, Environment Minister Dr. Sandra Laffon, CONAFOR Director Dr. Carlos Tucuch, Plant-for-the-Planet Chair Felix Finkbeiner, UT Calakmul Rector Andrés Zamudio, INIFAP Scientist Fernando Arellano & Plant-for-the-Planet Mexico President Raúl Negrete Cetina
    Image
    Research Partners
    Member of the
    Image
    Image
    Image
    Top Partners

    Berendsen-Muñoz
    Family

    Image
    Project Partners
    Image
    Image
    Image
    Image
    Image
    Technical Partner to
    Image

    Scientific Advisors

    The research efforts are guided by members of our Scientific Advisory Board